运筹学单纯形法
1、在求解常数项小于零的线性规划问题时,使用对偶单纯形法,可以把原始问题的常数项视为对偶问题的检验数,原始问题的检验数视为对偶问题的常数项。使用对偶单纯形法,在计算过程中每一步都保证了检验系数一定大于零。
2、因为基本可行解的个数有限,故经有限次转换必能得出问题的最优解。从线性方程组找出一个个的单纯形,每一个单纯形可以求得一组解,然后再判断该解使目标函数值是增大还是变小了,决定下一步选择的单纯形。
3、,想用单纯形法表解线性规划,得先把所有的不等式转划为“标准型”的约束方程:a.求min的,改为求其相反数的max b.如果b值是小于0的,那么两端同乘-1,不等号改向。
什么是运筹学里的单纯形法
单纯形法表,也是这个道理,不断的改变每个方程的“基变量”--如果想让某个变量做为“基变量”,就得把它在这个方程里的系数转化为 1,把它在其它方程里的系数,转化为0,这样后面的b值,就是这个变量的值了。
这个是运筹学解线性规划最简单的东西,找本教材看就行了,很简单的。单纯形法(simplex algorithm)是线性规划问题数值求解的流行技术。转轴操作是单纯形法中的核心操作,其作用是将一个基变量与一个非基变量进行互换。
如果主列中都为负数,就不用再算了,答案为无界解。
出基bai变量是运筹学中单纯形法的一个概念。是通过计算最小比值找出随着入基变量的增加首先减少到0的基变量。这个基变量变为0意味着下一个可行解中它就变成了非基变量。因此,这个变量被称为专当前迭代的出基变量。
兴奋的告诉他说他太兴奋了。Dantzig很 ft, 后来才知道原来黑板上的题目根本就不是什么家庭作业,而是老师说的本领域的未解决的问题,他给出的那个解法也就是单纯形法。据说,这个方法是上个世纪前十位的算法。
运筹学,单纯形法无穷多最优解怎么求?
所有的检验数均小于等于0.又存在某个非基变量的检验数等于0.则线性规划问题有无穷多最优解。
—检验数,中间主要部分——约束方程系数计算步骤(1).找出初始可行基,确定初始基可行解,建立初始单纯形表。
出现-1的话,必须两边同时乘上-1(记得改变符号),因为如果要用单纯形法解题,就必须保证b0(当然,对偶单纯形法另说)。
把对偶问题写出来,将为0的变量代入可以求出其余的变量。对偶问题的最优解就是原问题松弛变量的检验数的相反数。可以直接读出,根据互补松弛。或者你可以根据原问题写出对偶问题,然后用单纯形法求最优解。
含义不同:计算每行每列最小运费和次小运费的差额,写于下端和有端,从差额中选出最大者,并从相关行或列中选出最小者,进行分配,然后划去相关的行或列。以此类推,算出初始最优解。
运筹学单纯形法中,为什么检验数小于等于零才有最优解??
1、只有当全部检验数小于零,说明此时已经没有改进余地,所以也就是最优解了。
2、对于线性规划问题标准型,最优性判别条件所有检验数均小于等于零。如果是求最小问题,则最优性判别条件是所有检验数均大于等于零。检验数是用非基变量表示基变量,带入目标函数的表达式中得来的非基变量的系数。
3、若在极小化问题中,对于某个基本可行解,所有检验数小于等于0,则这个基本可行解是最优解。
4、对偶单纯形法检验数小于零接着计算。对偶单纯形使用条件:要求b那一列至少有一个数小于0,检验数Ci-Zi都小于0,即对偶单纯形法检验数小于零是符合使用条件的。
5、对偶单纯形法检验数大于0就找到检验数大于0的,且最大的。单纯形法在整个迭代过程中,始终保持原问题的可行性,即常数列大于等于0。
6、单纯形法的基本想法是从线性规划可行集的某一个顶点出发,沿着使目标函数值下降的方向寻求下一个顶点,面顶点个数是有限的,所以,只要这个线性规划有最优解,那么通过有限步选代后,必可求出最优解。