伯努力方程实验
伯努利方程:p+ρgz+(1/2)*ρv^2=C 式中p、ρ、v分别为流体的压强、密度和速度;h为铅垂高度;g为重力加速度;c为常量。一个直接的结论就是:流速高处压力低,流速低处压力高。
这就是伯努利方程,此式虽然是从不可压缩的液体如水的情况中推出来的,但对一切流体均适用。由此式可得当y1=y2时,谁的速度越大压强越少。(很抱歉,昨晚我打字时分心了,把方程的原理“动能定理”打成了“机械能守恒”。
伯努利效应,源于D.伯努利在1738年的贡献,是描述理想正压流体在势能场中定常运动时机械能守恒的基本原理。当流体沿流线运动,欧拉方程积分后,我们得到了著名的伯努利方程。
比如,管道内有一稳定流动的流体,在管道不同截面处的竖直开口细管内的液柱的高度不同,表明在稳定流动中,流速大的地方压强小,流速小的地方压强大。这一现象称为“伯努利效应”。伯努力方程:p+1/2pv^2=常量。在列车站台上都划有安全线。
伯努力原理如下:丹尼尔·伯努利在1726年提出了“伯努利原理”。这是在流体力学的连续介质理论方程建立之前,水力学所采用的基本原理,其实质是流体的机械能守恒。即:动能+重力势能+压力势能=常数。其最为著名的推论为:等高流动时,流速大,压力就小。
伯努利微分方程是p+1/2ρv2+ρgh=C。伯努力的定律是在一个流体系统,比如气流、水流中,流速越快,流体产生的压强就越小,这就是被称为“流体力学之父”的丹尼尔·伯努利1738年发现的“伯努利定理”。
勾股定理的发现历程
勾股定理的发现历程介绍如下:这个定理的历史可以被分成三个部分:发现勾股数、发现直角三角形中边长的关系、及其定理的证明。勾股数的发现时间较早,例如埃及的纸草书里面就有(3,4,5)这一组勾股数,而巴比伦泥板涉及的最大的一个勾股数组是(13500,12709,18541)。
在中国古代,《周髀算经》中记载了勾股定理的公式与证明,这一发现相传是在商代由商高提出,因此勾股定理又被称为商高定理。而在三国时期,赵爽对《周髀算经》内的勾股定理进行了详细的注释,并提供了一个新的证明方法。
了解勾股定理的发现历程 “一个直角三角形斜边的平方,等于其两个直角边的平方和”,看似如此简单的定理,他被发现的过程却并非如此简单:人们对勾股定理的认识经理了从特殊到一般的过程, 回顾历史,几乎所有的文明古国都分别发现这个定理,当中包括希腊、中国、埃及、巴比伦、印度等。
发展历程 中国是发现和研究勾股定理最古老的国家之一。中国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。在公元前1000多年,据记载,商高(约公元前1120年)答周公曰“故折矩,以为勾广三,股修四,径隅五。
在西方,大约公元前6世纪,古希腊的毕达哥拉斯学派首次提出并证明了这一定理,他们采用了演绎法来证明直角三角形斜边的平方等于两直角边平方之和。勾股定理的重要性不仅在于它是人类早期发现并证明的重要数学定理之一,还在于它为用代数思想解决几何问题提供了重要的工具。
勾股定理的历史
1、勾股定理其历史可以追溯到中国、巴比伦、印度等古代文明,并在欧洲得到了更为系统的发展和证明,具体历史及证明方法如下:中国古代的发现与应用:勾股定理最早可以追溯到中国古代,出现在《周髀算经》中。中国古代数学家利用勾股关系来解决土地测量、水利工程等实际问题,但并没有给出具体的证明方法。
2、在中国清朝末年,数学家华蘅芳提出了二十多种对于勾股定理证法。外国:远在公元前约三千年的古巴比伦人就知道和应用勾股定理,他们还知道许多勾股数组。美国哥伦比亚大学图书馆内收藏着一块编号为“普林顿322”的古巴比伦泥板,上面就记载了很多勾股数。
3、勾股定理的历史如下:勾股定理是古希腊数学家勾轮(Pythagoras)于公元前六世纪发现的。他发现了一些奥妙的数学形式,其中最有名的就是“勾股定理”,他发现了一些几何图形的规律,发现:“正三角形的三个边的平方和等于斜边的平方”。
4、中国:公元前十一世纪,周朝数学家商高就提出“勾股弦五”。公元三世纪,三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,后刘徽在刘徽注中亦证明了勾股定理。在中国清朝末年,数学家华蘅芳提出了二十多种对于勾股定理证法。
5、勾股定理的历史如下:勾股定理,是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”,而且在高等数学和其他学科中也有着极为广泛的应用。中国是发现和研究勾股定理最古老的国家之一。
6、在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。